在直角坐标系 xOy 中,曲线 C 1 的方程为 y = k x + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ 2 + 2 ρ cos θ - 3 = 0 .
(1)求 C 2 的直角坐标方程;
(2)若 C 1 与 C 2 有且仅有三个公共点,求 C 1 的方程.
设函数(、为实常数),已知不等式 对任意的实数均成立.定义数列和:=数列的前项和. (I)求、的值; (II)求证: (III)求证:
)已知点、和动点满足:, 且存在正常数,使得 (I)求动点的轨迹的方程; (II)设直线与曲线相交于两点、,且与轴的交点为.若求的值.
已知. (I)当时,解不等式; (II)当时,恒成立,求实数的取值范围.
设数列满足 (I)求数列的通项; (II)设求数列的前项和.
已知数列计算由此推算的公式,并用数学归纳法给出证明。