设 x , y , z ∈ R ,且 x + y + z = 1 .
(1)求 ( x - 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 的最小值;
(2)若 ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - a ) 2 ≥ 1 3 成立,证明: a ≤ - 3 或 a ≥ - 1 .
化简
设cos=-,tan=, <<, 0<<求-的值
(本小题满分12分)设函数,(且)。 (1)设,判断的奇偶性并证明; (2)若关于的方程有两个不等实根,求实数的范围;
(本题满分12分) 设是定义在上的增函数,令 (1)求证时定值; (2)判断在上的单调性,并证明; (3)若,求证。
(本小题满分12分)函数的一系列对应值如下表:
(1)根据表中数据求出的解析式; (2)指出函数的图象是由函数的图象经过怎样的变化而得到的; (3)令,若在时有两个零点,求的取值范围。