已知公比大于 1 的等比数列 { a n } 满足 a 2 + a 4 = 20 , a 3 = 8 .
(1)求 { a n } 的通项公式;
(2)求 a 1 a 2 - a 2 a 3 + … + ( - 1 ) n - 1 a n a n + 1 .
(本小题满分14分) 已知函数,. (Ⅰ)若函数在处取得极值,试求的值,并求在点处的切线方程; (Ⅱ)设,若函数在上存在单调递增区间,求的取值范围.
(本小题满分13分) 如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点,与的交点为. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面.
(本小题满分13分) 袋子中装有编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球. (Ⅰ)写出所有不同的结果; (Ⅱ)求恰好摸出1个黑球和1个红球的概率; (Ⅲ) 求至少摸出1个黑球的概率.
(本小题满分13分) 在中,角,,所对的边分别为,,,且,. (Ⅰ)求,的值; (Ⅱ)若,求,的值.
(本小题共13分) 已知数列的前项和为,且满足,. (Ⅰ)求证:{}是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)若,求证: .