如图,已知三棱柱 ABC- A 1 B 1 C 1的底面是正三角形,侧面 BB 1 C 1 C是矩形, M, N分别为 BC, B 1 C 1的中点, P为 AM上一点,过 B 1 C 1和 P的平面交 AB于 E,交 AC于 F.
(1)证明: AA 1∥ MN,且平面 A 1 AMN⊥ EB 1 C 1 F;
(2)设 O为△ A 1 B 1 C 1的中心,若 AO∥平面 EB 1 C 1 F,且 AO= AB,求直线 B 1 E与平面 A 1 AMN所成角的正弦值.
在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为.(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
已知数列的各项均为正数,其前项和为,且满足,N.(1)求的值;(2)求数列的通项公式;(3)是否存在正整数, 使, , 成等比数列? 若存在, 求的值; 若不存在, 请说明理由.
在中,,.(Ⅰ)求的值;(Ⅱ)求的值.
如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.(1)已知具有“性质”,且当时,求在上的最大值.(2)设函数具有“性质”,且当时,.若与交点个数为2013个,求的值.
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点(Ⅰ)求椭圆C的标准方程;(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围