如图,已知三棱柱 ABC- A 1 B 1 C 1的底面是正三角形,侧面 BB 1 C 1 C是矩形, M, N分别为 BC, B 1 C 1的中点, P为 AM上一点,过 B 1 C 1和 P的平面交 AB于 E,交 AC于 F.
(1)证明: AA 1∥ MN,且平面 A 1 AMN⊥ EB 1 C 1 F;
(2)设 O为△ A 1 B 1 C 1的中心,若 AO∥平面 EB 1 C 1 F,且 AO= AB,求直线 B 1 E与平面 A 1 AMN所成角的正弦值.
(本小题共13分)已知函数. (Ⅰ)求的单调区间; (Ⅱ)证明:,,; (Ⅲ)写出集合(b为常数且)中元素的个数(只需写出结论).
(本小题共14分)如图所示,四棱锥的底面是直角梯形,,,,底面,过的平面交于,交于(与不重合). (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ)如果,求此时的值.
(本小题共13分)长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字). (Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长; (Ⅱ)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.
(本小题共13分)已知等差数列的前项和为,等比数列满足,,. (Ⅰ)求数列,的通项公式; (Ⅱ)如果数列为递增数列,求数列的前项和.
(本小题共13分)已知函数(其中,R)的最小正周期为. (Ⅰ)求的值; (Ⅱ)如果,且,求的值.