如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD . △ ABC 是底面的内接正三角形, P 为 DO 上一点, PO = 6 6 DO .
(1)证明: PA ⊥ 平面 PBC ;
(2)求二面角 B - PC - E 的余弦值.
求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.
已知曲线y=x3+1,求过点P(1,2)的曲线的切线方程.
求曲线y=x3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.
直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点 的坐标及a的值.
已知抛物线y=x2+1,求过点P(0,0)的曲线的切线方程.