已知公比大于 1 的等比数列 { a n } 满足 a 2 + a 4 = 20 , a 3 = 8 .
(1)求 { a n } 的通项公式;
(2)求 a 1 a 2 - a 2 a 3 + … + ( - 1 ) n - 1 a n a n + 1 .
(本小题满分12分) 已知点是椭圆的右焦点,点、分别是轴、轴上的动点,且满足.若点满足. (I)求点的轨迹的方程; (II)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.
(本小题满分12分) 数列的首项,前项和与之间满足 (I)求证:数列{}的通项公式; (II)设存在正数,使对一切都成立,求的最大值.
(本小题满分12分) 已知在四棱锥中,底面是边长为4的正方形,平面⊥平面,△是正三角形, 、、分别是、、的中点. (I)求证:平面; (II)求平面与平面所成锐二面角的大小.
(本小题满分12分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求: (Ⅰ)恰好摸到2个“心”字球的概率; (Ⅱ)摸球次数的概率分布列和数学期望.
(本小题满分10分)在中,、、分别是三内角的对应的三边,已知。 (Ⅰ)求角的大小; (Ⅱ)若,判断的形状。