如图,一次函数 y 1 = kx + b ( k ≠ 0 ) 的图象与反比例函数 y 2 = m x ( m ≠ 0 ) 的图象交于 A(﹣1, n), B(3,﹣2)两点.
(1)求一次函数和反比例函数的解析式;
(2)点 P在 x轴上,且满足△ ABP的面积等于4,请直接写出点 P的坐标.
小英在计算一个多项式与的差时,因误以为是加上而得到答案,试求这个问题的正确答案.
已知互为倒数,互为相反数,为最大的负整数.试求的值.
已知,求的值.
如图,在平面直角坐标系中,直线l:沿x轴翻折后,与x轴交于点A,与y轴交于点B,抛物线与y轴交于点D,与直线AB交于点E、点F(点F在点E的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.
如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN、DM的数量关系与位置关系,并说明理由;(2)如图(2),设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形;(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,如图(3),求tan∠DEM.