已知抛物线 C : x 2 = 2 py p > 0 的焦点为 F ,且 F 与圆 M : x 2 + ( y + 4 ) 2 = 1 上点的距离的最小值为 4 .
(1)求 p ;
(2)若点 P 在 M 上, PA , PB 是 C 的两条切线, A , B 是切点,求 △ PAB 面积的最大值.
在不考虑空气阻力的条件下,火箭最大速度和燃料的质量、火箭(除燃料外)的质量的函数关系是,当燃料质量是火箭质量的 倍时,火箭的最大速度可达12Km/s.
已知函数,,设.(1)求函数的定义域及值域;(2)判断函数的奇偶性,并说明理由
若函数在区间上的最大值为9,求实数的值
已知二次函数的图象顶点为,且图象在x轴上截得线段长为8.(1)求函数的解析式;(2)证明:函数在上是减函数(3)若,试画出函数的图像(只画草图).
已知,(1)求的值; (2)若且,求实数的值;