已知抛物线 C : x 2 = 2 py p > 0 的焦点为 F ,且 F 与圆 M : x 2 + ( y + 4 ) 2 = 1 上点的距离的最小值为 4 .
(1)求 p ;
(2)若点 P 在 M 上, PA , PB 是 C 的两条切线, A , B 是切点,求 △ PAB 面积的最大值.
已知的三个内角所对的边分别为a,b,c,向量,,且. (Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围.
已知数列的前项和为,,且(为正整数) (Ⅰ)求出数列的通项公式; (Ⅱ)若对任意正整数,恒成立,求实数的最大值
设函数, (Ⅰ)求的定义域; (Ⅱ)求的单调增区间和减区间; (Ⅲ)求所有实数,使对恒成立.
)如图,在正三棱柱ABC—A1B1C1中,AB=AA1,点D是A1B1的中点,点F是AB的中点,点E在A1C1上,且DE⊥AE。 (1)证明B1F//平面ADE; (2)证明平面ABC1⊥平面C1DF; (3)求直线AD和平面ABC1所成角的正弦值。
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例; (2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.