直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.
(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?
(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?
二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x= -1。 (1)求函数解析式; (2)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积。
某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.市场调研表明:当销售价为每上涨1元时,其销售量就将减少10个.商场要想销售利润平均每月达到10000元,每个台灯的定价应为多少元?这时应进台灯多少个?
如图,AB是⊙O 的直径,CD是⊙O的一条弦,且CD⊥AB于点E. (1)求证:∠BCO=∠D; (2)若CD=,AE=2,求⊙O的半径.
.已知关于x的方程mx2+(3m+1)x+3=0(m≠0). (1)求证:方程总有两个实数根; (2)若方程的两个实数根都是整数,求正整数m的值;
如图:△ABC是边长为4的等边三角形,AB在X轴上,点C在第一象限,AC与Y轴交于点D,点A的坐标为(-1,0) (1)求 B、C、D三点的坐标; (2)抛物线经过B、C、D三点,求它的解析式;