一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为 ΔABC ,点 B 、 C 、 D 在同一条直线上,测得 ∠ ACB = 90 ° , ∠ ABC = 60 ° , AB = 32 cm , ∠ BDE = 75 ° ,其中一段支撑杆 CD = 84 cm ,另一段支撑杆 DE = 70 cm .求支撑杆上的点 E 到水平地面的距离 EF 是多少?(用四舍五入法对结果取整数,参考数据: sin 15 ° ≈ 0 . 26 , cos 15 ° ≈ 0 . 97 , tan 15 ° ≈ 0 . 27 , 3 ≈ 1 . 732 )
在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片. (1)用树状图或列表表示所有可能出现的结果; (2)求两次取出卡片的数字之积为正数的概率.
解分式方程:.
在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限. (1)如图,若抛物线经过A、B两点,求抛物线的解析式. (2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点. (3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.
如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证: (1)PE=PD; (2)AC•PD=AP•BC.
如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5. (1)求m、n的值并写出该反比例函数的解析式. (2)点E在线段CD上,S△ABE=10,求点E的坐标.