一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
(1)计算:如图①,直径为的三等圆⊙O、⊙O、⊙O两两外切,切点分别为A、B、C ,求OA的长(用含的代数式表示). (2)探索:若干个直径为的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中层圆圈的高度和(用含、的代数式表示). (3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(≈1.73)
某批发市场批发甲、乙两种水果,甲种水果的销售利润(万元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数),当为1吨时, 为1.4万元;当为2吨时, 为2.6万元. (1)求出的值,并写出(万元)与(吨)之间的函数关系式. (2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为吨,请你写出这两种水果所获得的销售利润之和(万元)与(吨)之间的函数关系式,并写出的取值范围。 (3)在(2)的前提下,这两种水果各进多少吨时,获得的销售利润之和最大,最大利润是多少?
在中,,是边上一点,以为直径的与边相切于点,连结并延长,与的延长线交于点. (1)求证:; (2)若,求的面积.
如图,点P的坐标为(2,),过点P作x轴的平行线交y轴于点A,交双曲线(x>0)于点N;作PM⊥AN交双曲线(x>0)于点M,连结AM.已知PN=4. (1)求点N坐标及k的值. (2)求M点坐标及△AMN的面积.
一种千斤顶利用了四边形的不稳定性. 如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当从变为时,千斤顶升高了多少?