如图,已知一次函数 y = kx + b 的图象与反比例函数 y = m x 的图象交于点 A ( 3 , a ) ,点 B ( 14 - 2 a , 2 ) .
(1)求反比例函数的表达式;
(2)若一次函数图象与 y 轴交于点 C ,点 D 为点 C 关于原点 O 的对称点,求 ΔACD 的面积.
如图,在菱形ABCD中,AB=2,,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN. (1)求证:四边形AMDN是平行四边形; (2)填空:①当AM的值为时,四边形AMDN是矩形; ②当AM的值为时,四边形AMDN是菱形。
5月31日是世界无烟日,某市卫生机构为了了解“导致吸烟人口比例高的最主要原因”,随机抽样调查了该市部分18~65岁的市民,下图是根据调查结果绘制的统计图,根据图中信息解答下列问题: (1)这次接受随机抽样调查的市民总人数为 (2)图1中m的值为 (3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数; (4)若该市18~65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要原因是“对吸烟危害健康认识不足”的人数。
如图1,点A为抛物线C1:的顶点,点B的坐标为(1,0),直线AB交抛物线C1于另一点C. (1)求点C的坐标; (2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a 交直线AB于F,交抛物线C1于G,若FG:DE=4∶3,求a的值; (3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴 于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值. 图1图2
已知△ABC中,AB=,AC=,BC=6. (1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长; (2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点 的三角形为格点三角形. ①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明); ②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需 证明).
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和 矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的 距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系. (1)求抛物线的解析式; (2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数 关系且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?