小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间 y (单位:秒)与训练次数 x (单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.
(1)求 y 与 x 之间的函数关系式;
(2)当 x 的值为6,8,10时,对应的函数值分别为 y 1 , y 2 , y 3 ,比较 ( y 1 - y 2 ) 与 ( y 2 - y 3 ) 的大小: y 1 - y 2 > y 2 - y 3 .
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm. (1)若花园的面积为192m2,求x的值; (2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A-结伴步行、B-自行乘车、C-家人接送、D-其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图. 请根据图中信息,解答下列问题: (1)本次抽查的学生人数是多少人? (2)请补全条形统计图; (3)请补全扇形统计图,并在图中标出“自行乘车”对应扇形的圆心角的度数; (4)如果该校学生有2080人,请你估计该校“家人接送”上学的学生约有多少人?
如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处, (1)求证:四边形AECF是菱形; (2)连接AC,若平行四边形ABCD的面积为8,,求AC•EF的值.
先化简,然后在-1,0,1,2四个数中选一个合适的代入求值.
如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3. (1)求抛物线的解析式; (2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标; (3)①在x轴上方的抛物线上,是否存在一点P,使四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由; ②在抛物线的对称轴上,是否存在上点Q,使得△BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.