某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元 / 千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量 y (千克)与销售单价 x (元 / 千克)之间的函数关系如图所示.
(1)求 y 与 x 的函数关系式,并写出 x 的取值范围;
(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
如图,点B在的直径AC的延长线上,点D在上,AD=DB,∠B=30°,若的半径为4. (1)求证:BD是的切线; (2)求CB的长.
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线,已知起跳点A距地面的高度为1米,弹跳的最大高度距地面4.75米,距起跳点A的水平距离为2.5米,建立如图所示的平面直角坐标系, (1)求演员身体运行路线的抛物线的解析式? (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.
如图,线段AB与⊙O相切于点C,连结OA,OB,OB交⊙O于点D,已知OA="OB=6" ,∠A=30°. (1)求⊙O的半径; (2)求图中阴影部分的面积.
已知:二次函数的图象经过点. (1)求二次函数的解析式; (2)求二次函数的图象与x轴的交点坐标; (3)将(1)中求得的函数解析式用配方法化成的形式.
如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止. (1)用画树状图或列表法求乙获胜的概率; (2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.