为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:
(1)本次接受问卷调查的同学有多少人?补全条形统计图.
(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.
先化简,再求值: ,其中m是方程的根
已知:如图,正方形ABCD,E,F分别为DC,BC中点.求证:AE=AF.
求不等式组的最小整数解.
如图,在平面直角坐标系中,点A的坐标为(-1,-1),点B的坐标为(3,-3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C. (1)求抛物线及线段OB所在直线的解析式; (2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD. ①求△BOD 面积的最大值,并求出此时点D的坐标; ②当△OPC为等腰三角形时,直接写出点P的坐标.
如图,已知□ABCD中,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连结AF、CE.(1)求证:△ADE≌△BCF;(2)求证:四边形AECF为平行四边形;(3)当□AECF为菱形时,M点恰为BC的中点,求CF:BC的值.