如图,抛物线 y = x 2 − mx − 3 ( m > 0 ) 交 y 轴于点 C , CA ⊥ y 轴,交抛物线于点 A ,点 B 在抛物线上,且在第一象限内, BE ⊥ y 轴,交 y 轴于点 E ,交 AO 的延长线于点 D , BE = 2 AC .
(1)用含 m 的代数式表示 BE 的长.
(2)当 m = 3 时,判断点 D 是否落在抛物线上,并说明理由.
(3)若 AG / / y 轴,交 OB 于点 F ,交 BD 于点 G .
①若 ΔDOE 与 ΔBGF 的面积相等,求 m 的值.
②连接 AE ,交 OB 于点 M ,若 ΔAMF 与 ΔBGF 的面积相等,则 m 的值是 .
【改编】如图,己知:反比例函数的图象与一次函数y=mx+b的图象交于点A(1,4),点B(-4,n). (1)求一次函数和反比例函数的解析式; (2)求△OAB的面积. (3)在直线AB上是否存在点P,使得△AOP是以OP为腰的等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.
如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0). (1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形; (2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
先化简,再求值:,其中a=+1,b=-1.
已知二次函数的图象经过点(0,3),顶点坐标为(1,4), (1)求这个二次函数的解析式; (2)求图象与x轴交点A、B两点的坐标; (3)图象与y轴交点为点C,求三角形ABC的面积.
【改编】如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5). (1)求证:△ACD∽△BAC; (2)求DC的长; (3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.