在 Rt Δ ABC 中, ∠ ACB = 90 ° , AB = 7 , AC = 2 ,过点 B 作直线 m / / AC ,将 ΔABC 绕点 C 顺时针旋转得到△ A ' B ' C (点 A , B 的对应点分别为 A ' , B ' ) ,射线 CA ' , CB ' 分别交直线 m 于点 P , Q .
(1)如图1,当 P 与 A ' 重合时,求 ∠ ACA ' 的度数;
(2)如图2,设 A ' B ' 与 BC 的交点为 M ,当 M 为 A ' B ' 的中点时,求线段 PQ 的长;
(3)在旋转过程中,当点 P , Q 分别在 CA ' , CB ' 的延长线上时,试探究四边形 P A ' B ' Q 的面积是否存在最小值.若存在,求出四边形 PA ' B ' Q 的最小面积;若不存在,请说明理由.
解方程:(每小题4分,共8分) (1)5x+2(3x-7)=9-4(2+x) (2)
先化简,再求值:8a-[2b+6(5-b)-3a],其中a=-3,b=
数学课上,李老师出示了如下框中的题目. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论 当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论: AEDB(填“>”,“<”或“=”). (2)特例启发,解答题目 解:题目中,AE与DB的大小关系是:AEDB(填“>”,“<”或“=”). 理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你接着完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD的长为(请你直接写出结果).
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题: (1)画出△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1 ; (2)在直线DE上标出一个点Q,使QA+QC的值最小.
进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话: