某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了 n 辆该型号汽车耗油 1 L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:
(1)求 n 的值,并补全频数分布直方图;
(2)若该汽车公司有600辆该型号汽车.试估计耗油 1 L 所行使的路程低于 13 km 的该型号汽车的辆数;
(3)从被抽取的耗油 1 L 所行使路程在 12 ⩽ x < 12 . 5 , 14 ⩽ x < 14 . 5 这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.
已知直线y=-3x与双曲线y=交于点P(-1,n)求m的值若点A(x1,y1 ),B(x2,y2)在双曲线y=上,且x1<x2<0,试比较y1、y2的大小.
如图,抛物线经过、两点,与轴交于另一点.求抛物线的解析式;已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.
在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点的纵坐标,则点在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点? 试用列表或画树状图的方法列举出所有点的情形; 分别求出点在两个反比例函数的图象上的概率,并说明谁的观点正确.
据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)
如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.求m的值;求点B的坐标;该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标