如图,一次函数 y = ax + b 的图象与反比例函数 y = k x 的图象交于 C , D 两点,与 x , y 轴交于 B , A 两点,且 tan ∠ ABO = 1 2 , OB = 4 , OE = 2 ,作 CE ⊥ x 轴于 E 点.
(1)求一次函数的解析式和反比例函数的解析式;
(2)求 ΔOCD 的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量 x 的取值范围.
在平面直角坐标系中,直线y1=x+a和y2=﹣x+b交于点E(3,3),点P(m,n)在直线y1=x+a上,过点P(m,n)作x轴的垂线,交直线y2=﹣x+b于点F. (1)若n=2,求△PEF的面积; (2)若PF=2,求点P的坐标.
如图,四边形ABCD是菱形,CE⊥AB,垂足为点E,且CE交对角线BD于点F.若∠A=120°,四边形AEFD的面积为,求EF的值.
在平面直角坐标系中,点A,B的坐标分别为(4,0),(0,4),直线y=x+b和线段AB交于点D,DE⊥x轴,垂足为点E,DF⊥y轴,垂足为点F,记w=DF﹣DE,当1≤w≤2时,求b的取值范围.
如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点. 求证:CD=2AE.
在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.