如图,在 Rt Δ ABC 中, ∠ A = 90 ° . AB = 8 cm , AC = 6 cm ,若动点 D 从 B 出发,沿线段 BA 运动到点 A 为止(不考虑 D 与 B , A 重合的情况),运动速度为 2 cm / s ,过点 D 作 DE / / BC 交 AC 于点 E ,连接 BE ,设动点 D 运动的时间为 x ( s ) , AE 的长为 y ( cm ) .
(1)求 y 关于 x 的函数表达式,并写出自变量 x 的取值范围;
(2)当 x 为何值时, ΔBDE 的面积 S 有最大值?最大值为多少?
已知:∠D=∠E,AD=AE,∠1=∠2. 求证:△ABD≌△ACE.
解方程:.
如图①,在□ABCD中,对角线AC⊥AB,BC=10,tan∠B=2.点E是BC边上的动点,过点E作EF⊥BC于点E,交折线AB-AD于点F,以EF为边在其右侧作正方形EFGH,使EH边落在射线BC上.点E从点B出发,以每秒1个单位的速度在BC边上运动,当点E与点C重合时,点E停止运动,设点E的运动时间为t()秒. (1)□ABCD的面积为;当t=秒时,点F与点A重合; (2)点E在运动过程中,连接正方形EFGH的对角线EG,得△EHG,设△EHG与△ABC的重叠部分面积为S,请直接写出S与t的函数关系式以及对应的自变量t的取值范围; (3)作点B关于点A的对称点Bˊ,连接CBˊ交AD边于点M(如图②),当点F在AD边上时,EF与对角线AC交于点N,连接MN得△MNC.是否存在时间t,使△MNC为等腰三角形?若存在,请求出使△MNC为等腰三角形的时间t;若不存在,请说明理由.
如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线经过A、C两点. (1)求抛物线的解析式及其顶点坐标; (2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标; (3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.
如图,△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,BM交CD于点E,且点E为CD的中点,连接MD,过点D作ND⊥MD于点D,DN交BM于点N. (1)若BC=,求△BDE的周长; (2)求证:NE-ME=CM.