首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 84

阅读以下材料:

对数的创始人是苏格兰数学家纳皮尔 ( J Nplcr 1550 1617 年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉 ( Evlcr 1707 1783 年)才发现指数与对数之间的联系.

对数的定义:一般地,若 a x = N ( a > 0 a 1 ) ,那么 x 叫做以 a 为底 N 的对数,记作 x = log a N ,比如指数式 2 4 = 16 可以转化为对数式 4 = log 2 16 ,对数式 2 = log 5 25 ,可以转化为指数式 5 2 = 25

我们根据对数的定义可得到对数的一个性质:

log a ( M · N ) = log a M + log a N ( a > 0 a 1 M > 0 N > 0 ) ,理由如下:

log a M = m log a N = n ,则 M = a m N = a n

M · N = a m · a n = a m + n ,由对数的定义得 m + n = log a ( M · N )

m + n = log a M + log a N

log a ( M · N ) = log a M + log a N

根据阅读材料,解决以下问题:

(1)将指数式 3 4 = 81 转化为对数式  

(2)求证: log a M N = log a M log a N ( a > 0 a 1 M > 0 N > 0 )

(3)拓展运用:计算 log 6 9 + log 6 8 log 6 2 =   

登录免费查看答案和解析
相关知识点

阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplc