随着我市农产品整体品牌形象“聊 · 胜一筹 ! ”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段 AB , BD 分别表示大棚的墙高和跨度, AC 表示保温板的长.已知墙高 AB 为2米,墙面与保温板所成的角 ∠ BAC = 150 ° ,在点 D 处测得 A 点、 C 点的仰角分别为 9 ° , 15 . 6 ° ,如图2.求保温板 AC 的长是多少米?(精确到0.1米)
(参考数据: 3 2 ≈ 0 . 86 , sin 9 ° ≈ 0 . 16 , cos 9 ° ≈ 0 . 99 , tan 9 ° ≈ 0 . 16 , sin 15 . 6 ° ≈ 0 . 27 , cos 15 . 6 ° ≈ 0 . 96 , tan 15 . 6 ° ≈ 0 . 28 )
先化简,再从﹣1、0、1、2中选一个你认为适合的数作为x的值代入求值.
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE。 (1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE="1" cm,求BD的长。
已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°。 (1)求证:△ABD∽△DCE; (2)设BD=x,AE=y,求y关于x的函数关系式。
如图,已知二次函数y=ax2+bx+c的图象经过A(1,0)、B(5,0)、C(0,5)三点。 (1)求这个二次函数的解析式; (2)过点C的直线y=kx+b与这个二次函数的图象相交于点E(4,m),请求出△CBE的面积S的值。
已知抛物线y=ax2+4ax+m(a≠0)与x轴的交点为A(-1,0),B(x2,0)。 (1)直接写出一元二次方程ax2+4ax+m=0的两个根:x1 =, x2= (2)原抛物线与y轴交于C点,CD∥x轴交抛物线于D点,求CD的值; (3)若点E(1,y1),点F(-3,y2)在原抛物线上,你能比较出y2和y1; 的大小吗?若能,请比较出大小,若不能,请说明理由。