某中学以“我最喜爱的书籍”为主题,对学生最喜爱的书籍类型的情况进行了随机抽样调查(每位被调查者必须且只能选择最喜爱的一种书籍),并将调查结果绘制成如下的两幅不完整的统计图:
请根据图中提供的信息,回答下列问题:
(1)求本次被调查学生的人数;
(2)请将上面的两幅统计图补充完整;
(3)若从2名最喜爱文学书籍和2名最喜爱科普书籍的学生中随机抽取2人,请用列表或画树状图的方法求所抽取的两人恰好都是最喜爱文学书籍的概率.
如图, AB 、 AC 分别是 ⊙ O 的直径和弦, OD ⊥ AC 于点 D .过点 A 作 ⊙ O 的切线与 OD 的延长线交于点 P , PC 、 AB 的延长线交于点 F .
(1)求证: PC 是 ⊙ O 的切线;
(2)若 ∠ ABC = 60 ° , AB = 10 ,求线段 CF 的长.
如图,为了测量山坡上一棵树 PQ 的高度,小明在点 A 处利用测角仪测得树顶 P 的仰角为 45 ° ,然后他沿着正对树 PQ 的方向前进 10 m 到达点 B 处,此时测得树顶 P 和树底 Q 的仰角分别是 60 ° 和 30 ° ,设 PQ 垂直于 AB ,且垂足为 C .
(1)求 ∠ BPQ 的度数;
(2)求树 PQ 的高度(结果精确到 0 . 1 m , 3 ≈ 1 . 73 ) .
某种型号汽车油箱容量为 40 L ,每行驶 100 km 耗油 10 L .设一辆加满油的该型号汽车行驶路程为 x ( km ) ,行驶过程中油箱内剩余油量为 y ( L ) .
(1)求 y 与 x 之间的函数表达式;
(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的 1 4 ,按此建议,求该辆汽车最多行驶的路程.
有2部不同的电影 A 、 B ,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择 A 电影的概率;
(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).
如图,在 ▱ ABCD 中,点 E 、 F 分别在边 CB 、 AD 的延长线上,且 BE = DF , EF 分别与 AB 、 CD 交于点 G 、 H .求证: AG = CH .