通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程 a x 2 + bx + c = 0 ( a ≠ 0 ) ,当 b 2 − 4 ac ⩾ 0 时有两个实数根: x 1 = − b + b 2 − 4 ac 2 a , x 2 = − b − b 2 − 4 ac 2 a ,于是: x 1 + x 2 = − b a , x 1 · x 2 = c a 、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于 x 的一元二次方程 x 2 + kx + k + 1 = 0 的两实数根分别为 x 1 , x 2 ,且 x 1 2 + x 2 2 = 1 ,则 k 的值为 .
计算-2a2+a2的结果为______________。
已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f(-3)=。
请你写出一个抛物线的表达式,此抛物线满足对称轴是轴,且在轴的左侧部分是上升的,那么这个抛物线表达式可以是.
如图,当小杰沿坡度的坡面由B到A行走了26米时,小杰实际上升高度AC=。(可以用根号表示)
经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性的大小相同,三辆汽车经过这个十字路口,至少有两辆车向左转的概率为。