某同学报名参加校运动会,有以下4个项目可选择.
径赛项目: 100 m 跑, 200 m 跑, 400 m 跑(分别用 A 1 , A 2 , A 3 表示. ) 田赛项目:跳远(用 B 表示).
(1)该同学从4个项目中任选1个是径赛项目的概率为 .
(2)该同学从4个项目中任选2个,请用画树状图或列表的方法列举出所有可能出现的结果,并求参赛项目都是径赛的概率.
已知:关于x的二次函数(a>0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数. (1)y1=y2,请说明a必为奇数; (2)设a=11,求使y1≤y2≤y3成立的所有n的值; (3)对于给定的正实数a,是否存在n,使△ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由.
如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点. (1)求证:△ADP∽△ABQ; (2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值; (3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.
如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2). (1)求反比例函数的关系式; (2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.
如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°. (1)求证:DP是⊙O的切线; (2)若⊙O的半径为3cm,求图中阴影部分的面积.
如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)