某同学报名参加校运动会,有以下4个项目可选择.
径赛项目: 100 m 跑, 200 m 跑, 400 m 跑(分别用 A 1 , A 2 , A 3 表示. ) 田赛项目:跳远(用 B 表示).
(1)该同学从4个项目中任选1个是径赛项目的概率为 .
(2)该同学从4个项目中任选2个,请用画树状图或列表的方法列举出所有可能出现的结果,并求参赛项目都是径赛的概率.
已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF. (1)如图1,当点D在线段BC上时.求证:CF+CD=BC; (2)如图2,当点D在线段BC的延长线上时,其他条件不变,则CF,BC,CD三条线段之间有什么关系?并说明理由.
操作:准备一张长方形纸,按下图操作: (1)把矩形ABCD对折,得折痕MN; (2)把A折向MN,得Rt△AEB; (3)沿线段EA折叠,得到另一条折痕EF,展开后可得到△EBF. 探究:△EBF的形状,并说明理由.
某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示. (1)有月租费的收费方式是(填①或②),月租费是元; (2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式; (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上 (1)求线段AB所在直线的函数解析式; (2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有个,在图上标出P点的位置.
如图,已知E是ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F. (1)求证:△ABE≌△FCE. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.