(探究证明)
(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.
如图1,矩形 ABCD 中, EF ⊥ GH , EF 分别交 AB , CD 于点 E , F , GH 分别交 AD , BC 于点 G , H .求证: EF GH = AD AB ;
(结论应用)
(2)如图2,在满足(1)的条件下,又 AM ⊥ BN ,点 M , N 分别在边 BC , CD 上,若 EF GH = 11 15 ,则 BN AM 的值为 ;
(联系拓展)
(3)如图3,四边形 ABCD 中, ∠ ABC = 90 ° , AB = AD = 10 , BC = CD = 5 , AM ⊥ DN ,点 M , N 分别在边 BC , AB 上,求 DN AM 的值.
把下列各式分解因式 (1) (2)a2(x-y)-b2(x-y)
如图,∠E=40°,CD∥AB,∠ABE=2∠ABC,∠BCE=4∠ABC, (1)若设∠ABC=x°,则∠BCD=°,∠D=°(用含x的代数式表示); (2)求∠D的度数.
解不等式组:
如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4. (1)点D坐标为,点E坐标为; (2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示, ①当α=30°时,求点P的坐标; ②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃. (1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围; (2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?