在平面直角坐标系 xOy 中, 抛物线 y = a x 2 + bx + c 的开口向上, 且经过点 A ( 0 , 3 2 )
(1) 若此抛物线经过点 B ( 2 , − 1 2 ) ,且与 x 轴相交于点 E , F .
①填空: b = (用 含 a 的代数式表示) ;
②当 E F 2 的值最小时, 求抛物线的解析式;
(2) 若 a = 1 2 ,当 0 ⩽ x ⩽ 1 ,抛物线上的点到 x 轴距离的最大值为 3 时, 求 b 的值 .
已知一次函数y=的图象是直线l1, ,l1与y轴相交于点A,与x轴相交于点B,直线l2经过点B,并且与y轴相交于点C,点C到原点的距离是6个单位长度。 (1)求直线l2所对应的一次函数表达式; (2)求△ABC形的面积.
求下列各式中x的值: (1)9x2-64=0; (2)64(x+1)3=125
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作□DEFA. (1)当m=1时,求AE的长. (2)当0<m<3时,若□DEFA为矩形,求m的值; (3)是否存在m的值,使得□DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.
如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC. (1)当点P运动到线段OA的中点时, 点C的坐标为 ; (2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标; (3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.
2013年是一个让人记忆犹新的年份,雾霾天气持续笼罩我国大部分地区,口罩市场出现热销,某旗舰网店用8000元购进甲、乙两种型号的口罩,销售完后共获利2800元,进价和售价如下表:
(1)求该网店购进甲、乙两种型号口罩各多少袋? (2)该网店第二次以原价购进甲、乙两种型号口罩,购进乙种型号口罩袋数不变,而购进甲种型号口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种型号的口罩都售完,要使第二次销售活动获利不少于3680元,乙种型号的口罩最低售价为每袋多少元?