为落实“垃圾分类”,环卫部门要求:垃圾要按 A , B , C 三类分别装袋、投放,其中 A 类指废电池,过期药品等有毒垃圾, B 类指剩余食品等厨余垃圾, C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是 A 类的概率;
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
如图,在△ABC中,AB=AC.作∠BAC的角平分线,交BC于点D(尺规作图,保留痕迹);在AD的延长线上任取一点E,连接BE、CE. 求证:△BDE≌△CDE;当AE=2AD时,四边形ABEC是菱形.请说明理由.
为了了解某校九年级学生的体质健康状况,从该校九年级学生中随机抽取了40名学生进行调查.将调查结果绘制成如下统计表和统计图.请根据所给信息解答下列问题:]
补充完成频数统计表;求出扇形统计图的“优秀”部分的圆心角度数;若该校九年级共有200名学生,试估计该校体质健康状况达到良好及以上的学生总人数.
先化简:,再选择一个恰当的数作为x的值代入求值.
解不等式组,并判断x=是否为此不等式组的解.
如图23,已知抛物线与轴相交于A、B两点,其对称轴为直线,且与x轴交于点D,AO=1.填空:=_______。=_______,点B的坐标为(_______,_______):若线段BC的垂直平分线EF交BC于点E,交轴于点F.求FC的长;探究:在抛物线的对称轴上是否存在点P,使⊙P与轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由。