某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:
请根据图中信息,解答下列问题
(1)该调查的样本容量为 , a = % , b = % ,“常常”对应扇形的圆心角为 °
(2)请你补全条形统计图;
(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?
先化简再求值:其中a=3
计算:
已知:抛物线与轴交于A(1,0)和B(,0)点,与轴交于C点 (1)求出抛物线的解析式; (2)设抛物线对称轴与轴交于M点,在对称轴上是否存在P点,使为等腰三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时点E 的坐标.
已知:在梯形中,点是的中点,是正三角形.动点P、Q分别在线段和上运动,且∠MPQ=60°保持不变. (1)求证:△BMP∽△CPQ (2)设PC=,MQ=求与的函数关系式; (3)在(2)中,当取最小值时,判断的形状,并说明理由.
已知,如图,D为△ABC内一点连接BD、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、CE交于E,连接DE. (1)求证: (2)求证:△DBE∽△ABC.