某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过 m ( 30 < m ⩽ 100 ) 人时,每增加1人,人均收费降低1元;超过 m 人时,人均收费都按照 m 人时的标准.设景点接待有 x 名游客的某团队,收取总费用为 y 元.
(1)求 y 关于 x 的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求 m 的取值范围.
如图,在平面直角坐标系中,抛物线 y = a x 2 + 2 ax + c 交 x 轴于 A , B 两点,交 y 轴于点 C ( 0 , 3 ) , tan ∠ OAC = 3 4 .
(1)求抛物线的解析式;
(2)点 H 是线段 AC 上任意一点,过 H 作直线 HN ⊥ x 轴于点 N ,交抛物线于点 P ,求线段 PH 的最大值;
(3)点 M 是抛物线上任意一点,连接 CM ,以 CM 为边作正方形 CMEF ,是否存在点 M 使点 E 恰好落在对称轴上?若存在,请求出点 M 的坐标;若不存在,请说明理由.
在平面直角坐标系中,把横纵坐标都是整数的点称为"整点".
(1)直接写出函数 y = 3 x 图象上的所有"整点" A 1 , A 2 , A 3 , … 的坐标;
(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.
根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.
为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成 A , B , C , D 四组,得到如下统计图:
(1)求 A 组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;
(2)求这天5路公共汽车平均每班的载客量;
(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.
甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.
如图,已知直线 y 1 = - 1 2 x + 1 与 x 轴交于点 A ,与直线 y 2 = - 3 2 x 交于点 B .
(1)求 ΔAOB 的面积;
(2)求 y 1 > y 2 时 x 的取值范围.