如图, AB 是 ⊙ O 的直径, BC 是 ⊙ O 的弦,直线 MN 与 ⊙ O 相切于点 C ,过点 B 作 BD ⊥ MN 于点 D .
(1)求证: ∠ ABC = ∠ CBD ;
(2)若 BC = 4 5 , CD = 4 ,则 ⊙ O 的半径是 .
(内蒙古 呼 和 浩 特 )已知:抛物线y=+(2m-1)x+-1经过坐标原点,且当x<0时,y随x的增大而减小.(1)求抛物线的解析式,并写出y<0时,对应x的取值范围;(2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B, DC⊥x轴于点C.①当BC=1时,直接写出矩形ABCD的周长;②设动点A的坐标为(a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.
(黔西南州)如图,在平面直角坐标系中,平行四边形如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形.抛物线经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形和平行四边形重叠部分的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,的面积最大?最大面积是多少?并写出此时M的坐标.
(内蒙古 呼 和 浩 特 )如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B, sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)若函数y="3x" 与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.
(内蒙古 呼 和 浩 特 )某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象.以下是该科技人员绘制的图象和表格的不完整资料,已知点A的坐标为(2,10).请你结合表格和图象:(1)指出付款金额和购买量哪个变量是函数的自变量x,并写出表中a、b的值;(2)求出当x>2时,y关于x的函数解析式;(2)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该玉米种子,分别计算他们的购买量和付款金额.
(黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为吨,应交水费为元,写出与之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?