九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.
根据统计图提供的信息,解答下列问题:
(1)在这次调查中一共抽取了 名学生, m 的值是 .
(2)请根据以上信息直接在答题卡上补全条形统计图;
(3)扇形统计图中,“数学”所对应的圆心角度数是 度;
(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.
如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8. (1)求∠BDF的度数; (2)求AB的长.
“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元). (1)求y与x之间的函数关系式; (2)当销售单价定为多少元时,每天的利润最大?最大利润是多少? (3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?
学校大力推动科技创新,并于近期开展了全校性的小制作比赛. 组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图. 已知从左到右各矩形的高度比是2:3:4:6:4:1,其中第四小组有2人交了1件作品,5人交了2件作品,2人交了3件作品. 请你回答: (1)本次活动共收到_______________件作品;其中第四小组平均每人交了_____________件作品; (2)经评比,第一组和第五组分别有3件和9件作品获奖,那么第一组和第五组的获奖率分别为____________和_______________; (3)小制作评比结束后,组委会评出了4件最优秀的作品A、B、C、D,决定从中随机选出两件进行展示,请用树状图或列表法求出刚好展示作品A和作品C的概率.
先化简,再求值:,其中,x满足且x为整数.
开发区有A,B两个仓储中心,m是仓储中心附近的一条主干道,画出连接AB的线路,再作出从AB的中点P到主干道m最近的路线. (要求:用尺规作图,并保留作图痕迹)