有四张正面分别标有数字1,2, − 3 , − 4 的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为 m ,再随机地抽取一张,将卡片上的数字记为 n .
(1)请用画树状图或列表法写出 ( m , n ) 所有的可能情况;
(2)求所选的 m , n 能使一次函数 y = mx + n 的图象经过第一、三、四象限的概率.
如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0)。 (1)m为何值时,△OAB面积最大?最大值是多少? (2)如图2,在(1)的条件下,函数的图像与直线AB相交于C、D两点,若,求k的值。 (3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10)。
如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线经过C、B两点,与x轴的另一交点为D。 (1)点B的坐标为(,),抛物线的表达式为. (2)如图2,求证:BD//AC; (3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长。
如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径。
如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE。 (1)求证:BD=DE。 (2)若AC⊥BD,AD=3,SABCD=16,求AB的长。
2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”。下图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题: (1)实施首日,该片区行人闯红灯违法受处罚一共人; (2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是%; (3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图; (4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于度。