有四张正面分别标有数字1,2, − 3 , − 4 的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为 m ,再随机地抽取一张,将卡片上的数字记为 n .
(1)请用画树状图或列表法写出 ( m , n ) 所有的可能情况;
(2)求所选的 m , n 能使一次函数 y = mx + n 的图象经过第一、三、四象限的概率.
解不等式组:.
计算:;
如图,已知平面直角坐标系中,点,为两动点,其中,连结,.(1)求证:;(2)当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线交轴于点,过点作直线交抛物线于两点,问是否存在直线,使?若存在,求出直线对应的函数关系式;若不存在,请说明理由.
已知等腰中,,平分交于点,在线段上任取一点(点除外),过点作,分别交于点,作,交于点,连结.(1)求证:四边形为菱形;(2)当点在何处时,菱形的面积为四边形面积的一半?
如图1,线段过圆心,交圆于两点,切圆于点,作,垂足为,连结.(1)写出图1中所有相等的角(直角除外),并给出证明;(2)若图1中的切线变为图2中割线的情形,与圆交于两点,与交于点,,写出图2中相等的角(写出三组即可,直角除外);(3)在图2中,证明:.