我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
随着襄阳市近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图1所示;种植花卉的利润与投资量成二次函数关系,如图2所示(注:利润与投资量的单位:万元) (1)分别求出利润与关于投资量的函数关系式; (2)如果这位专业户以10万元资金投入种植花卉和树木,求他获得的最大利润是多少? (3)在(2)的条件下,根据对市场需求的调查,这位专业户决定投入种植树木的资金不得高于投入种植花卉的资金,他至少获得多少利润?
在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题: (1)试猜想四边形ABDF是什么特殊四边形,并说明理由; (2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.
如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF). (1)求证:△ACE≌△AFE; (2)求tan∠CAE的值.
如图,反比例函数(k为常数,且k≠5)经过点A(1,3). (1)求反比例函数的解析式; (2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.
某班体育委员小华对本班近期体育测验成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题: (1)频数、频率分布表中=,=; (2)补全频数分布直方图; (3)班主任准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?