如图,四边形 OABC 是边长为4的正方形,点 P 为 OA 边上任意一点(与点 O 、 A 不重合),连接 CP ,过点 P 作 PM ⊥ CP 交 AB 于点 D ,且 PM = CP ,过点 M 作 MN / / AO ,交 BO 于点 N ,连接 ND 、 BM ,设 OP = t .
(1)求点 M 的坐标(用含 t 的代数式表示);
(2)试判断线段 MN 的长度是否随点 P 的位置的变化而改变?并说明理由.
(3)当 t 为何值时,四边形 BNDM 的面积最小;
(4)在 x 轴正半轴上存在点 Q ,使得 ΔQMN 是等腰三角形,请直接写出不少于4个符合条件的点 Q 的坐标(用含 t 的式子表示).
如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=30cm,点A到地面的距离AD=8cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(精确到1cm).(参考数据:)
如图,吴老师不小心把墨水滴在了3个班学生捐款金额的统计表上,只记得:三个班的捐款总金额是7700元,2班的捐款金额比3班的捐款金额多300元.(1)求2班、3班的捐款金额;(2)若1班学生平均每人捐款的金额大于48元,小于51元.求1班的学生人数.
A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图像.(1)求甲车返回过程中y与x之间的函数解析式,并写出x的取值范围;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.