如图,抛物线 y = a x 2 + bx − 9 2 与 x 轴交于 A ( 1 , 0 ) 、 B ( 6 , 0 ) 两点, D 是 y 轴上一点,连接 DA ,延长 DA 交抛物线于点 E .
(1)求此抛物线的解析式;
(2)若 E 点在第一象限,过点 E 作 EF ⊥ x 轴于点 F , ΔADO 与 ΔAEF 的面积比为 S ΔADO S ΔAEF = 1 9 ,求出点 E 的坐标;
(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M 、 N 两点,是否存在点 D ,使 D A 2 = DM · DN ?若存在,请求出点 D 的坐标;若不存在,请说明理由.
如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.试说明△ACE≌△ACF.
在Rt△中,,为上一点,AC=5,AB=13,BD =8, 求线段AD的长度。
已知一个正数的平方根是a-3与2a-9,求这个正数的值。
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B. (1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是的切线,连接OQ.求的大小; (2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被截得的弦长.
不透明的口袋里装有红、黄、蓝三种颜色的小球(其它一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为. ⑴.求袋中黄球的个数; ⑵.第一次摸出一个球(不放回).第二次再摸出一个球,请用树形图或列表法求两次摸出的都是红球的概率。