如图,菱形 ABCD 中,作 BE ⊥ AD 、 CF ⊥ AB ,分别交 AD 、 AB 的延长线于点 E 、 F .
(1)求证: AE = BF ;
(2)若点 E 恰好是 AD 的中点, AB = 2 ,求 BD 的值.
解不等式组:并把解集在数轴上表示出来。
为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:例如:某户居民1月份用水8立方米,应收水费为2×6+4×(8-6)=20(元).请根据上表的内容解答下列问题:(1)若某户居民2月份用水5立方米,则应收水费多少元?(2)若某户居民3月份交水费36元,则用水量为多少立方米?(3)若某户居民4月份用水a立方米(其中6<a<10),请用含a的代数式表示应收水费.(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水x立方米,请用含x的代数式表示该户居民5、6两个月共交水费多少元.
如图,四边形ABCD和ECGF都是正方形.(1)写出表示阴影部分面积的代数式;(结果要求化简)(2)当a=4时,求阴影部分的面积.
(1)已知|m|=3,|n|=2,且m<n,求m2+mn+n2的值.(2)已知实数a、b在数轴上的位置如图,试化简|a|-|a+b|-2|a-b|.
已知A=x2+x,B=x2-3x.(1)计算:A-B和A+B.(2)先化简,再求值:3(A-2B)-2(-2B),其中x=-.