如图,在 Rt Δ ABC 中, ∠ ABC = 90 ° , AC 的垂直平分线分别与 AC , BC 及 AB 的延长线相交于点 D , E , F , ⊙ O 是 ΔBEF 的外接圆, ∠ EBF 的平分线交 EF 于点 G ,交 ⊙ O 于点 H ,连接 BD 、 FH .
(1)试判断 BD 与 ⊙ O 的位置关系,并说明理由;
(2)当 AB = BE = 1 时,求 ⊙ O 的面积;
(3)在(2)的条件下,求 HG · HB 的值.
如图1,在等边△ABC的边AC的延长线上取一点E,以CE为边作等边△CDE,使它 与△ABC位于直线AE的同侧. (1)同学们对图1进行了热烈的讨论,猜想出如下结论,你认为正确的有______(填序号). ①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ; ④∠ARB=60°;⑤△CPQ是等边三角形. (2)当等边△CED绕C点旋转一定角度后(如图2),(1)中有哪些结论还是成立的? 并对正确的结论分别予以证明.
如图,已知△ABC中,∠B=∠C,AB=AC=12cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由点C向A点运动. (1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由. (2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在边AC、BC边上,且AD=CE.连接DE、DF、EF. (1)求证:△ADF≌△CEF (2)试判断△DFE的形状,并说明理由.
已知:如图,AB=AD,∠D=∠B,∠1=∠2,求证:(1)△ADE≌△ABC;(2)∠DEB=∠2.
如图,AB=EF,BC⊥AE于C,FD⊥AE于D,CE=DA. 求证:(1)△ABC≌△EFD; (2)AB//EF.