如图,在平面直角坐标系中,抛物线 y = m x 2 + 4 mx − 5 m ( m < 0 ) 与 x 轴交于点 A 、 B (点 A 在点 B 的左侧),该抛物线的对称轴与直线 y = 3 3 x 相交于点 E ,与 x 轴相交于点 D ,点 P 在直线 y = 3 3 x 上(不与原点重合),连接 PD ,过点 P 作 PF ⊥ PD 交 y 轴于点 F ,连接 DF .
(1)如图①所示,若抛物线顶点的纵坐标为 6 3 ,求抛物线的解析式;
(2)求 A 、 B 两点的坐标;
(3)如图②所示,小红在探究点 P 的位置发现:当点 P 与点 E 重合时, ∠ PDF 的大小为定值,进而猜想:对于直线 y = 3 3 x 上任意一点 P (不与原点重合), ∠ PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.
已知方程没有实数根,化简:。
解方程:2y2+ 4(y-1)=0(用公式法)
解方程:2x2-4x-6=0(用配方法)
计算:+-
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C. (1)求抛物线的解析式; (2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时的点E的坐标.