已知:如图,在四边形ABCD中, AB ∥ CD ,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.
如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.
(本题满分10分, 第(1)小题6分,第(2)小题4分) 已知二次函数的图像经过点A(0,4)和B(1,-2). (1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式; (2)写出该抛物线顶点C的坐标,并求出△CAO的面积.
解方程:-=2.
(12)如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米. (1)当h=2.6时,求y与x的函数关系式. (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由. (3)若球一定能越过球网,又不出边界.则h的取值范围是多少?
如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点; (1)求反比例函数和一次函数的解析式; (2)求直线AB与x轴的交点C的坐标及△AOB的面积; (3)求不等式的解集(请直接写出答案).