某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:
(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?
为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题: (1)求a、b的值. (2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数. (3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?
已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积. 注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.
如图,每个小方格都是边长为1个单位长度的小正方形. (1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1. (2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2. (3)画出一条直线将△AC1A2的面积分成相等的两部分.
先化简,再求值:(1﹣)÷,其中a=sin60°.
如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的解析式及顶点D的坐标; (2)判断△ABC的形状,证明你的结论; (3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.