如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为 m,乙转盘中指针所指区域内的数字为 n(若指针指在边界线上时,重转一次,直到指针指向一个区域为止)
(1)请你用画树状图或列表的方法求出 m和 n的乘积为偶数的概率;
(2)直接写出点( m, n)落在函数 y=﹣4 x图象上的概率.
先化简,再求值:,其中.
解方程:(只需要选择一题解答,多选则以A类题计分) (A类) (B类) (C类)
计算:(1)(-5)-(+1)-(-6);(2)
阅读并解答下列问题:我们熟悉两个乘法公式:①(+b)2=2+2b+b2;②(-b)2=2-2b+b2.现将这两个公式变形,可得到一个新的公式③:b=()2-()2, 这个公式形似平方差公式,我们不妨称之为广义的平立差公式。灵活、恰当地运用公式③将会使一些数学问题迎刃而解。 例如:因式分解:(b-1)2+(+b-2)( +b-2b) 解:原式=+- =(b-1)2+(+b-b-1)2-(b-1)2=(-1)(b-1)2=(-1)2(b-1)2你能利用公式(或其他方法)解决下列问题吗? 已知各实数,b,c满足b=c2+9且=6-b,求证:="b"
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个。例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个。 (1)根据题意,完成下表:
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、 n表示)。 (3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?