如图,地面上小山的两侧有 A, B两地,为了测量 A, B两地的距离,让一热气球从小山西侧 A地出发沿与 AB成30°角的方向,以每分钟40 m的速度直线飞行,10分钟后到达 C处,此时热气球上的人测得 CB与 AB成70°角,请你用测得的数据求 A, B两地的距离 AB长.(结果用含非特殊角的三角函数和根式表示即可)
如图,长方形纸片ABCD,沿折痕AE折叠边AD,使点D落在BC边上的F处,已知AB=8,S△ABF=24,求EC的长.
如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA. (1)求证:DE平分∠BDC; (2)若点 M在DE上,且DC=DM,求证:ME=BD.
如图,CD是等边△ABC的角平分线,延长CB到E,使BE=BD,F是AE的中点,已知CD=6 cm,求DF的长.
已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC, (1)求证:△ABC是等腰三角形; (2)判断点O是否在∠BAC的角平分线上,并说明理由.
如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形,若AB=2,求△ABC的周长.(结果保留根号).