如图, 是 的直径, AC ̂ = BC ̂ , ,连接 .
(1)求证: ;
(2)若直线 为 的切线, 是切点,在直线 上取一点 ,使 , 所在的直线与 所在的直线相交于点 ,连接 .
①试探究 与 之间的数量关系,并证明你的结论;
② EB CD 是否为定值?若是,请求出这个定值;若不是,请说明理由.
如图,在平面直角坐标系中,,且,点的坐标是.(1)求点的坐标;(2)求过点的抛物线的表达式;(3)连接,在(2)中的抛物线上求出点,使得.
如图,是的外接圆,,过点作,交的延长线于点.(1)求证:是的切线;(2)若的半径,求线段的长.
甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发(h)时,汽车与甲地的距离为(km),与的函数关系如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中与之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.
小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度m,m,m(点在同一直线上).已知小明的身高是1.7m,请你帮小明求出楼高(结果精确到0.1m).