如图,小明利用学到的数学知识测量大桥主架在水面以上的高度 AB ,在观测点 C 处测得大桥主架顶端 A 的仰角为 30 ° ,测得大桥主架与水面交汇点 B 的俯角为 14 ° ,观测点与大桥主架的水平距离 CM 为60米,且 AB 垂直于桥面.(点 A , B , C , M 在同一平面内)
(1)求大桥主架在桥面以上的高度 AM ;(结果保留根号)
(2)求大桥主架在水面以上的高度 AB .(结果精确到1米)
(参考数据 sin 14 ° ≈ 0 . 24 , cos 14 ° ≈ 0 . 97 , tan 14 ° ≈ 0 . 25 , 3 ≈ 1 . 73 )
如图,在 △ A B C 中,点 D 、 E 、 F 分别在 A B 、 B C 、 A C 上,且 ∠ A D F + ∠ D E C = 180 ° , ∠ A F E = ∠ B D E . (1)如图1,当 D E = D F 时,图1中是否存在于 A B 相等的线段?若存在,请找出并加以证明.若不存在说明理由. (2)如图2,当 D E = k D F (其中 0 < k < 1 )时,若 ∠ A = 90 ° , A F = m ,求 B D 的长(用含 K , M 的式子表示).
如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同) (1)填空:n的值为___________; (2)求S关于x的函数关系式,并写出x的取值范围.
如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F. (1)求证:EF与圆O相切; (2)若AB=6,AD=4,求EF的长.
如图,在平面坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B.将△AOB绕点B逆时针旋转,使点O的对应点D落在X轴的正半轴上.若AB的对应线段CB恰好经过点O. 点B的坐标和双曲线的解析式. 判断点C是否在双曲线上,并说明理由.
甲乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲乙两人每小时各做多少个零件?