如图,小明利用学到的数学知识测量大桥主架在水面以上的高度 AB ,在观测点 C 处测得大桥主架顶端 A 的仰角为 30 ° ,测得大桥主架与水面交汇点 B 的俯角为 14 ° ,观测点与大桥主架的水平距离 CM 为60米,且 AB 垂直于桥面.(点 A , B , C , M 在同一平面内)
(1)求大桥主架在桥面以上的高度 AM ;(结果保留根号)
(2)求大桥主架在水面以上的高度 AB .(结果精确到1米)
(参考数据 sin 14 ° ≈ 0 . 24 , cos 14 ° ≈ 0 . 97 , tan 14 ° ≈ 0 . 25 , 3 ≈ 1 . 73 )
一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?
、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.(1)求关于的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.
(本题满分10分) 如图,点在的直径的延长线上,点在上,,,(1)求证:是的切线;(2)若的半径为2,求图中阴影部分的面积.
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面 成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:tan400=0.84, sin400=0.64, cos400=)
如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)将下列命题填写完整,并使命题成立(图中不再添加其它的点和线): ①当△ABC满足条件AB=AC时,四边形AFBD是形; ② 当△ABC满足条件时,四边形AFBD是正方形.