一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.
(1)第一次摸到字母A的概率为 ;
(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.
老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分. (1)补全小明同学所画的树状图; (2)求小明同学两次抽到卡片上的数字之积是奇数的概率.
如图,已知锐角△ABC. (1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.
先化简,再求值:,其中.
解方程:.
抛物线y=ax2+3交x轴于A(-4,0)、B两点,交y轴于C.将一把宽度为1.2的直尺如图放置在直角坐标系中,使直尺边A′D′∥BC,直尺边A′D′交x轴于E,交AC于F,交抛物线于G,直尺另一边B′C′交x轴于D.当点D与点A重合时,把直尺沿x轴向右平移,当点E与点B重合时,停止平移,在平移过程中,△FDE的面积为S. (1)请你求出S的最大值及抛物线解析式; (2)在直尺平移过程中,直尺边B′C′上是否存在一点P,使点P、D、E、F构成的四边形这菱形,若存在,请你求出点P坐标;若不存在,请说明理由; (3)过G作GH⊥x轴于H ①在直尺平移过程中,请你求出GH+HO的最大值; ②点Q、R分别是HC、HB的中点,请你直接写出在直尺平移过程中,线段QR扫过的图形的面积和周长.