一个不透明的盒子里装有除颜色外其余均相同的2个黑球和 n 个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为 1 3 .
(1)求 n 的值;
(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出第2个球,求两次摸球摸到一个白球和一个黑球的概率.请用画树状图或列表的方法进行说明.
如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数 的图象的一个交点为A(-1,n).(1)求反比例函数的解析式;(2)若P是坐标轴上一点,且PA=OA,试写出点的坐标.
已知:如图,在中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH.求证:≌.
先化简,再求值:,其中.
已知:如图,在平面直角坐标系中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3。过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E。(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF进行如下操作:(1)如图(1),△DEF沿线段AB向右平移(即D点在线段AB上移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,它的面积是否变化,如果不变请求出 其面积.如果变化,说明理由.(2)如图(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图(3),△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出的值.