如图1,已知 ΔABC ≅ ΔEBD , ∠ ACB = ∠ EDB = 90 ° ,点 D 在 AB 上,连接 CD 并延长交 AE 于点 F .
(1)猜想:线段 AF 与 EF 的数量关系为 ;
(2)探究:若将图1的 ΔEBD 绕点 B 顺时针方向旋转,当 ∠ CBE 小于 180 ° 时,得到图2,连接 CD 并延长交 AE 于点 F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
(3)拓展:图1中,过点 E 作 EG ⊥ CB ,垂足为点 G .当 ∠ ABC 的大小发生变化,其它条件不变时,若 ∠ EBG = ∠ BAE , BC = 6 ,直接写出 AB 的长.
(8分)已知OC是内部的一条射线,M、N分别为OA、OB上的点,线段OM、ON分别以20°/s、10°/s的速度绕点O逆时针旋转。 (1)如图①,若,当OM、ON逆时针旋转2s时,分别到OM′、ON′处, 求的值; (2)如图②,若OM、ON分别在、内部旋转时,总有, 求的值。
下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.
(1)求出这10名女生成绩的中位数、众数; (2)按《娄底市中考体育测试》规定,女生800米跑成绩不超过3′38 〞就可以得满分.该校学生有490人,男生比女生少70人. 请你根据上面抽样的结果,估算该校考生中有多少名女生该项考试得满分? (3)若男考生1号和10号同时同地同向围着400米跑道起跑,在1000米的跑步中,他们能否首次相遇?如果能相遇,求出所需时间;如果不能相遇,说明理由.
李小明有存款600元,张亮有存款2000元,从2012年1月开始,李小明每月存500元,张亮每月存200元,不计利息,试问至少几个月后,李小明的存款能超过张亮的存款?
x为什么数时,代数式的值比代数式x-的值大3?
为配合今年的“养成教育年”活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图. 其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类 B: 能将垃圾放到规定的地方,但不会考虑垃圾的分类 C:偶尔会将垃圾放到规定的地方 D:随手乱扔垃圾 根据以上信息回答下列问题: (1)该校课外活动小组共调查了 多少人?并补全条形统计图; (2)如果该校共有师生1200人, 那么随手乱扔垃圾的约有多少人?