如图1,已知 ΔABC ≅ ΔEBD , ∠ ACB = ∠ EDB = 90 ° ,点 D 在 AB 上,连接 CD 并延长交 AE 于点 F .
(1)猜想:线段 AF 与 EF 的数量关系为 ;
(2)探究:若将图1的 ΔEBD 绕点 B 顺时针方向旋转,当 ∠ CBE 小于 180 ° 时,得到图2,连接 CD 并延长交 AE 于点 F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
(3)拓展:图1中,过点 E 作 EG ⊥ CB ,垂足为点 G .当 ∠ ABC 的大小发生变化,其它条件不变时,若 ∠ EBG = ∠ BAE , BC = 6 ,直接写出 AB 的长.
四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.
如图1,点A(1,6)和点M(m,n)都在反比例函数y=(k>0)的图象上. (1)求反比例函数的解析式; (2)当m=3时,求直线AM的解析式,并求出△AOM的面积; (3)如图2,当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.
学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本. (1)甲、乙两种图书的单价分别为多少元? (2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?
第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,, 2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看. (1)请你直接写出按照爸爸的规则小明能看比赛的概率; (2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.
(1)已知:如图,点A,C,D,B在同一条直线上,AC=BD,AE=BF,∠A=∠B.求证:∠E=∠F. (2)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)