《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为 .
如图,∠C=∠D,再添加条件_________或条件_________,就可以用AAS定理判定△ABD≌△BAC.
如图所示,P为∠BAC平分线上一点,PM⊥AC于M点,PN⊥AB于N点,MN交AP于D点,要证明MD=ND,只要证_________≌_________,或_________≌_________.而要证明其中一对三角形全等,又必须先证明_________≌_________.由已知条件,只要用“_________”的判定定理就可以证其全等,由此看来,图中共有_________对全等三角形,进一步深思:直线AP与直线MN还可以证明互相_________.
如图,将△ABC绕顶点A旋转一定角度得到△ADE,那么△ABC_________△ADE,AB=_________,AC=_________,CB=_________,∠B=_________,∠BAC=_________,∠BAD=_________.
如图,BE交AD于C点,△ABC≌△DEC,则∠A=_________,∠E=_________,∠BCA=_________,AB=_________,BC=_________,AC=_________,点C的对应点是点_________,AB∥_________,若AB⊥BE,则DE_________BE.
请你举出三个在学习生活中经常见到或使用的全等形的例子:________________.