某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.
(1)求三个年级获奖总人数;
(2)请补全扇形统计图的数据;
(3)在获一等奖的同学中,七年级和八年级的人数各占14,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.
如图(8),
先化简,后计算:,其中.
计算:
如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动. (1)若∣x+2y-5∣+∣2x-y∣=0,试分别求出1秒钟后,A、B两点的坐标. (2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由. (3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何? 请写出你的结论并说明理由.
已知:在△ABC和△XYZ中,∠A=40°,∠Y+∠Z=95°,将△XYZ如图摆放,使得∠X的两条边分别经过点B和点C. (1)当将△XYZ如图1摆放时,则∠ABX+∠ACX=度; (2)当将△XYZ如图2摆放时,请求出∠ABX+∠ACX的度数,并说明理由; (3)能否将△XYZ摆放到某个位置时,使得BX、CX同时平分∠ABC和∠ACB?请直接写出你的结论:.