某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.
(1)求三个年级获奖总人数;
(2)请补全扇形统计图的数据;
(3)在获一等奖的同学中,七年级和八年级的人数各占14,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.
如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和点D,在直线CD上有一点P.(1)如果P点在C、D之间运动,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由;(2)若点P在C、D两点的外侧运动(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何.
实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=________°,∠3=________°.(2)在(1)中,若∠1=55°,则∠3=________°;若∠1=40°,则∠3=________°.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=________°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有________(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,________.求证:________________________.证明:________________________.
如图,AB∥CD,EB∥DF,试说明∠1=∠2.
如图,已知AB∥DE,∠1=∠2,问AE与DC有什么样的位置关系?请说明理由.